
Akademie vµed µCeské republiky
Ústav teorie informace a automatizace

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

I. Vajda and E.C. van der Meulen:

Divergences between Models and Data
under

Hypothetical and Empirical Quantizations

No. 2275 January 2010

ÚTIA AV µCR, P.O.Box 18, 182 08 Prague, Czech Republic
Telex: 122018 atom c, Fax: (+42) (2) 688 4903

E-mail: utia@utia.cas.cz



This report constitutes an unrefereed manuscript which is intended to be submitted
for publication. Any opinions and conclusions expressed in this report are those of the
author(s) and do not necessarily represent the views of the Institute.

2



Divergences between models and data under two types of quantizations 1

January 17, 2010

On Divergences Between Models and Data

Under Hypothetical and Empirical Quantizations

I. VAJDA1 and E: C: VAN DER MEULEN2
1 Institute of Information Theory and Automation, Academy of Sciences of the Czech

Republic, Pod vodárenskou vµeµzí 4, 182 08 Prague, Czech Republic. E-mail:
vajda@utia.cas.cz
2 Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B,
B-3001 Heverlee, Belgium. E-mail: edward.vandermeulen@wis.kuleuven.ac.be

This paper summarizes the research on goodness-of-�t disparity statistics obtained as
appropriately scaled �-divergences or �-disparities of quantized hypothetical and
empirical distributions. It is shown that the classical Pearson-type statistics are
obtained if we quantize by means of hypothetical quantiles, and modi�ed versions of
the spacings-based disparity statistics known from the literature are obtained if we
quantize by means of empirical quantiles. The main attention is paid to the asymptotic
properties of the new modi�ed disparity statistics and their comparisons with the
classical spacings-based statistics known from the literature. First the asymptotic
equivalence between both of them is proved. Then for the new statistics are proved the
law of large numbers and the asymptotic distributions under the hypothesis and under
local and �xed alternatives. Special attention is devoted to the limit laws for the power
divergence statistics of orders � 2 R. Parameters of these laws are evaluated for
� 2 (�1;1) in a closed form and their continuity in � on the subinterval (�1=2;1) is
proved. These closed form expressions are used to compare local asymptotic powers of
the tests based on these statistics, which allows to extend previous asymptotic
optimality results to the class of power divergence statistics. Tables of values of the
asymptotic parameters are presented for selected representative orders of � � �1=2:

Key words: asymptotic normality, asymptotic optimality, consistency, good-
ness-of-�t, power divergences, spacings, �-disparities, �-divergences

1. Introduction and basic concepts

We consider real-valued independent identically distributed observations X1; : : : ; Xn with
a distribution function F (x) and the problem of testing the hypothesis H0 that F is
a given continuous increasing distribution function F0. As is well known, we can then
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assume without loss of generality that the observation space is the interval X = (0; 1)
and F0(x) = x on X . Further, we can restrict ourselves to test statistics Tn which
are functions of su¢ cient statistics. Examples of su¢ cient statistics are the empirical
distribution function

Fn(x) =
1

n

nX
i=1

I(x � Xi); x 2 X (1.1)

where I is the indicator function, and the order statistics

0 = Y0 � Y1 = Xn:1 � � � � � Yn = Xn:n � Yn+1 = 1 (1.2)

where Y0 and Yn+1 are dummy variables and the inequalities are typically strict with
probability one.

It is natural to consider test statistics of the form T = Tn = cnD(F0; Fn) where
cn is an appropriate scaling constant and D(F;G) is a nonnegative measure of disparity
between two distribution functions F and G on X = (0; 1). Let � be a continuous function
� : (0;1) 7! R. We shall deal with �-disparities of the form

D�(F;G) =

Z 1

0

g(x)�

�
f(x)

g(x)

�
dx (1.3)

when F and G are de�ned by densities f and g, denoted by F � f;G � g, or of the form

D�(p; q) =
kX
j=1

qj�

�
pj
qj

�
(1.4)

when F;G are quantized into discrete distributions p = (p1; p2; :::; pk); q = (q1; q2; :::; qk)
by an interval partition P of X = (0; 1) using certain cutpoints

0 = a0 < a1 � � � < ak�1 < ak = 1 for k > 1: (1.5)

If the function � is convex then the �-disparities are traditionally called �-divergences.
For convex � de�nitions (1.3) and (1.4) represent special cases of general �-divergences
introduced for arbitrary probability measures by Csiszár (1963). In this paper we restrict
ourselves to �-divergences for � from the class � of convex functions � : (0;1) 7! R
which are twice continuously di¤erentiable in a neighborhood of 1 with �00(1) > 0 and
�(1) = 0: Then the integrals D�(F;G) and sums D�(p; q) in (1.3) and (1.4) are well
de�ned for all distribution functions F � f , G � g and all discrete distributions p; q by
applying behind the integral and sum a lower semicontinuous and convex extension of the
function s�(t=s)from the open domain t; s > 0 into the closure t; s � 0. Moreover, then
D�(F;G) and D�(p; q) are nonnegative and are equal to zero if and only if F = G or
p = q respectively (for details about the de�nition of �-divergences and their properties
see Liese and Vajda (2006)).

If the function � considered in (1.3) and (1.4) is di¤erentiable at t = 1 with �(1) = 0
and with the di¤erence �(t) � �0(1) (t � 1) decreasing for t 2 (0; 1) and increasing for
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t 2 (1;1), then D�(F;G) and D�(p; q) are �-disparities in the sense considered by
Lindsay (1994), Morales et al. (2003) and others cited there. For � 2 � the di¤erence
�(t)� �0(1) (t� 1) is automatically decreasing on (0; 1) and increasing on (1;1) so that
the concept of �-disparity generalizes the concept of �-divergence.

An example of functions � 2 � is provided by the class of functions f�� : � 2 Rg
de�ned on (0;1) by

��(t) =
t� � �(t� 1)� 1

�(�� 1) (1.6)

for � 6= 0, � 6= 1, and by the continuous extensions

�1(t) = t ln t� t+ 1 and �0(t) = � ln t+ t� 1 (1.7)

otherwise. The corresponding divergences D��(F;G) and D��(p; q) are denoted by
D�(F;G) and D�(p; q), respectively. The class of divergences D�(p; q) contains the fol-
lowing classical examples: the quadratic divergence

D2(p; q) =
1

2
�2(p; q) =

1

2

kX
j=1

(pj � qj)
2

qj
(1.8)

where �2(p; q) is also known as �2-divergence, the harmonic divergence

D�1(p; q) = D2(q;p) =
1

2

kX
j=1

(pj � qj)
2

qj
; (1.9)

the logarithmic divergences

D0(p; q) = D1(q;p) and D1(p; q) = I(p; q) =
kX
j=1

pj ln
pj
qj

(1.10)

where I(p; q) is known as the information divergence (often denoted also as D(p k q)),
and the square root divergence

D1=2(p; q) = 4H
2(p; q) = 4

kX
j=1

�p
pj �

p
qj
�2

(1.11)

where H(p; q) is known as Hellinger distance.
We admit that the size k = kn of the interval partition P = f(aj�1; aj] : 1 � j � kg

of X introduced in (1.5), and also the cutpoints a1; : : : ; ak�1 themselves, may in general
depend on the sample size n, but this dependence is not always explicitly denoted in this
paper. Quantizations of F0 and Fn by means of such partition lead to discrete hypothetical
and empirical distributions

p0 = (p0j : 1 � j � k) and pn = (pnj : 1 � j � k) (1.12)
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where
p0j = F0(aj)� F0(aj�1) = aj � aj�1 > 0 (1.13)

and
pnj = Fn(aj)� Fn(aj�1) > 0 a. s. (1.14)

These distributions can serve as arguments of the disparitiesD� in (1.4), yieldingD�(p0;pn),
and of the corresponding �-disparity statistics T� de�ned by

T� = T�;n := nD�(p0;pn) = n
kX
j=1

pnj�

�
p0j
pnj

�
: (1.15)

In this paper we restrict ourselves to the simplest �-disparity statistics T�, which are
obtained when one of the distributions p0,pn in (1.15) is uniform, that is, equal to

uk = (ukj = 1=k : 1 � j � k) : (1.16)

This takes place when the cutpoints aj of (1.13) or (1.14) are the quantiles

aj = G�1(j=k) = inf fx 2 (0; 1] : G(x) � j=kg (1.17)

of the distribution functions G = F0 or G = Fn , respectively. Proceeding this way we
obtain two versions of D�(p0;pn) and T�.

(I) Applying the rule (1.17) to G = F0 we get the hypothetical quantiles

aj = F�10 (j=k) = j=k; 1 � j � k � 1 (1.18)

leading, according to (1.13) and (1.15), to the uniform hypothetical distribution
p0 = uk and the frequency-type disparity statistics

T
(f)
� := nD�(uk;pn) = n

kX
j=1

pnj�

�
1

k pnj

�
(1.19)

where the pnj �s are given by (1.14) for the aj of (1.18) and a0 = 0, ak = 1. We denote
the corresponding partition by P0. In other words

pnj =
1

n

nX
i=1

I(aj�1;aj ](Yi) (1.20)

is the relative frequency of the observations Y1; : : : ; Yn in the cell (aj�1; aj] = ((j �
1)=k; j=k)]; j = 1; � � � ; k; of the partition P0.
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Example 1.1. A well-known subclass of the frequency-type disparity statistics T (f)�

consists of the power divergence statistics

T (f)� = nD�(uk;pn) = n

kX
j=1

pnj ��

�
1

kpnj

�
; � 2 R (1.21)

systematically studied in Read and Cressie (1988).
Classical examples of such T (f)� are the Neyman statistic T (f)2 = nD2(uk;pn), the Pear-

son statistic T (f)�1 = nD�1(uk;pn), the log-likelihood ratio statistic T
(f)
0 = nD0(uk;pn),

the reversed log-likelihood ratio statistic T (f)1 = nD1(uk;pn) , and the Freeman�Tukey
statistic T (f)1=2 = nD1=2(uk;pn).

(II) The main focus of this paper is on disparity statistics T� obtained from (1.15)
when rule (1.17) is applied to the empirical distribution G = Fn, leading to the empirical
quantiles aj = F�1n (j=k). For simplicity we assume that n is divisible by k. Then, using
the integers m = n=k � 1; we get the k � 1 empirical quantiles

aj = F�1n (j=k) = Ymj; 1 � j � k � 1 (1.22)

and the partition P = Pn consisting of the k cells

(aj�1; aj] = (Ym(j�1); Ymj]; 1 � j � k � 1; (ak�1; ak] = (Ym(k�1); 1] (1.23)

where a0 = Ym0 = Y0 = 0 (cf (1.2) and (1.5)), leading to the hypothetical distribution
p0 = (p0j : 1 � j � k) with

p0j = Ymj � Ym(j�1) for 1 � j � k � 1; and p0k = 1� Ym(k�1): (1.24)

(Note that here and in the sequel mj; m(j � 1) and so forth denote the products of
integers and not the pairs of integers as in (1.12)�(1.15) and elsewhere. We believe that
the correct meaning ofmj can always be recognized. Also note that the order statistic Ymk
does not occur as an endpoint in the de�nition (1.23) of the cells (aj�1; aj]; 1 � j � k.)
Since all cells (aj�1; aj]; 1 � j � k, in (1.23) contain exactly m of the observations

Y1; : : : ; Yn, formulas (1.14) and (1.15) lead to the uniform empirical distribution pn =
uk and to the spacings-type disparity statistics

T
(m)
� := nD�(p0;uk) = m

kX
j=1

�(kp0j) (1.25)

where the p0j �s are given by (1.24) with Y0 = 0 . The use of the spacings terminology is
justi�ed by the fact that, since k = n=m, formula (1.25) can be given the form

T
(m)
� = m

k�1X
j=1

�
� n
m
(Ymj � Ym(j�1))

�
+m�

� n
m
(1� Ym(k�1))

�
(1.26)
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where Ymj � Ym(j�1) are m-spacings. For m = 1, (1.23) reduces to

(aj�1; aj] = (Yj�1; Yj]; 1 � j � n� 1; (an�1; an] = (Yn�1; 1]; (1.27)

where a0 = Y0 = 0 (giving rise to a partition P1), the distribution (1.24) reduces to

p0j = Yj � Yj�1 for 1 � j � n� 1; and p0n = 1� Yn�1; (1.28)

and the statistic T (m)� of (1.26) reduces to the simple-spacings-formula

T� =

n�1X
j=1

� (n(Yj � Yj�1)) + � (n(1� Yn�1)) : (1.29)

Remark 1.1. Formulas (1.26) and (1.29) employ the dummy observations Y0 = 0 and
Yn+1 = 1 introduced in (1.2). Unless otherwise explicitly stated, these dummy observa-
tions are also assumed in the formulas below, notably in (1.30) and (1.32).

It seems that the spacings-based goodness-of-�t test statistics given in the literature
lacked sofar the motivation of taking into account the notion of disparity between hypo-
thetical and empirical distributions p0 and pn. This contrasts with the goodness-of-�t
statistics based on deterministic partitions derived from the aj in (1.18) and the related
frequency counts (1.20), where the typical statistics, including the most classical Pearson
statistic T1 and likelihood ratio statistic T0, can easily be recognized as appropriately
scaled power divergences between p0 and pn.

The classical spacings-based statistics, however, appear to have been motivated rather
by other considerations such as the analytic simplicity of formulas and the possibility
to achieve desired asymptotic properties. In fact, as pointed out by Pyke(1965) in his
landmark paper, most of the classical spacings-based statistics were proposed within the
context of testing the randomness of events in time, in which di¤erences between successive
order statistics (spacings) were considered to play an important role. Also, in the period
1946-1953, when most of the classical tests based on spacings were proposed, research
focused mostly on studying the behavior of these tests under the null-hypothesis, rather
than under an alternative, making it unnecessary to motivate the test statistic from the
point of view of divergence or disparity. Although the concept of dispersion of spacings
around the uniform distribution has been mentioned as a motivation for a test statistic
by some authors, no known spacings-based statistic happens to be the disparity statistic
T
(m)
� of (1.26) or T� of (1.29) for some � 2 �. This situation is illustrated in the next two
examples for the simple-spacings statistics where m = 1: Then T� is of the form R�+W�

for

R� =
n+1X
j=1

� (n (Yj � Yj�1)) (1.30)

and
W� = � (n(1� Yn�1))� � (n(Yn � Yn�1)� � (n(1� Yn)) ; (1.31)
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while the classical simple-spacings statistics are of the form

S� =

n+1X
j=1

� ((n+ 1)) (Yj � Yj�1)) : (1.32)

With reference to the above discussion, we mention here that Pyke(1965) writes that it is
more convenient to weight the spacings by n+ 1 instead of n if one is concerned entirely
with uniform observations.

Let us now turn to comparing our m-spacings�based disparity statistics T (m)� from
(1.25) - (1.26) and the m-spacings�based statistics known from the literature for general
m � 1. We shall start with DelPino�s (1979) class of statistics of the form

S
(m)
� = m

kX
j=1

�

�
n+ 1

m
(Ymj � Ym(j�1))

�
(1.33)

where it is assumed that n + 1 is divisible by k and that m = (n + 1)=k � 1: Hence
the notation in our paper is consistent in the sense that (1.33) reduces for m = 1 to the
formula for S� in (1.32). Del Pino found �(t) = t2 to be optimal among the functions
� considered by him. The class (1.33) was later investigated by Jammalamadaka et al.
(1989), Jimenez and Shao (2009) and many others cited there. Jimenez and Shao (2009)
studied the asymptotics of S(m)� for �xed m � 1: Jammalamadaka et al (1989) studied

the asymptotics of S(m)� for m tending slowly to in�nity as n ! 1. In such case these
asymptotics depend only on the local properties of �(t) in the neighborhood of t = 1 and a
wide class of functions � can be admitted including those with �00(1) = 0. However, as we
have seen in the examples above, even for � from the above introduced �-divergence class
�; the statistics (1.33) di¤er from those in (1.25) or (1.26). Other examples of well-known
spacings-based statistics which di¤er from our spacings-type �-disparity statistics (1.25)
and (1.26) will be given in the next section. Therefore it is important to look at the
problem whether the classical spacings-based statistics and our spacings-type disparity
statistics are asymptotically equivalent for n ! 1; and, if yes, then in what precise
sense.

The�rst objective of the present paper is to prove the mutual asymptotic equivalence
of the statistics of the two mentioned origins. This equivalence helps to understand why
many ad hoc de�ned spacings-based statistics exhibit desirable asymptotic properties.The
second objective of this paper is to prove the consistency and asymptotic normality
under �xed and local alternatives for a su¢ ciently wide variety of our spacings-type �-
disparity or �-divergence statistics. These results may also be useful in the estimation of
functionals of the type of �-disparity or �-divergence. The last objective is to apply this
asymptotic theory to the spacings-based power divergence statistics and compare their
asymptotic parameters and properties for various divergence orders � 2 R. To achieve all
these objectives on a reasonably limited space, we restrict ourselves in this paper to the
simple spacings with m = 1.
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Sofar we have de�ned for the case m = 1 three di¤erent spacings-based statistics, viz.
T� of (1.29), R� of (1.30), and S� of (1.32). Whereas among those three statistics, only
T� is of the form nD�(p0;uk), the formulas of T�, R�, and S� are quite similar, and we
shall refer to all three of them as spacings-type disparity statistics in the sequel. In
the rest of the paper we introduce somer new spacings-type disparity statistics and study
the asymptotic properties of all of them together. Let us describe brie�y how the paper
is organized.

Section 2 compares the structure of the new spacings-type disparity statistic T� is com-
pared with that of the spacings-based statistics known from the literature, and three more
spacings-type disparity statistics are introduced.

Section 3 deals with the asymptotic equivalence of these six di¤erent disparity statistics.

Section 4 presents a general asymptotic theory of spacings-type disparity statistics.

Section 5 introduces spacings-type power divergence statistics and presents results about
their consistency.

Section 6 presents theorems on the asymptotic normality of the spacings-type power
divergence statistics under local and �xed alternatives.

Section 7 comments on comparable results in previous papers in the literature.

2. Spacings-based statistics

This section reviews various types of spacings-based goodness-of-�t statistics known from
the literature. As before, 0 � Y1 � � � � � Yn � 1 are the ordered observations. Unless
otherwise explicitly stated, we use also the dummy observations Y0 = 0 and Yn+1 = 1.

Let us start with our spacings-type �-disparity statistic T (m)� introduced in (1.26).
This statistic is not e¢ cient if m > 1 because then it ignores the observations Ymj+r for
1 � j � k � 1 and 1 � r � m� 1. Shifting the orders j=k of the quantiles in (1.22) by a
quantity depending on r; we obtain the additional quantiles

a
(r)
j = F�1n

�
mj + r

n

�
= Ymj+r; 1 � j � k � 1; 1 � r � m� 1 (2.1)

and, instead of p0j = Ymj � Ym(j�1) = p
(0)
0j , the shifted hypothetical probabilities p

(r)
0j =

Ymj+r � Ym(j�1)+r, while still preserving the uniform shifted empirical probabilities p(r)nj =
1=k = m=n on the cells (a(r)j�1; a

(r)
j ]; 1 � r � m � 1. Replacing each term �( n

m
(Ymj �

Ym(j�1))) in (1.26) by the average

1

m

m�1X
r=0

�
� n
m
(Ymj+r � Ym(j�1)+r)

�
(2.2)
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of all �( n
m
(p
(r)
0j )) for 0 � r � m� 1, we get a more e¢ cient version of T (m)� , namely

T̂
(m)
� =

n�m�1X
j=0

�
� n
m
(Yj+m � Yj)

�
+m�

� n
m
(1� Yn�m)

�
(2.3)

which for m = 1 reduces to (1.29), so that the notation of our paper is consistent.

A similar procedure can be carried out for S(m)� of (1.33), which involves the obser-
vations Ymj; j = 1; � � � ; k, but ignores the observations Ymj+r for 0 � j � k � 1 and
1 � r � m � 1. Applying the averaging and substitution from the previous paragraph,
with n replaced by n+ 1 in (1.33), and excluding the terms containing unde�ned expres-
sions (that is, the terms Ymk+r � Ym(k�1)+r; 1 � r � m � 1, where mk + r > n + 1 ), we
get a similar more e¢ cient version

Ŝ
(m)
� =

n�m+1X
j=0

�

�
n+ 1

m
(Yj+m � Yj)

�
(2.4)

of Del Pino�s statistic S(m)� of (1.33). Notice that if m = 1, then Ŝ(m)� of (2.4) reduces to
S� of (1.32) above, so that our notation is in this sense still consistent.

The statistics (2.4) are formally well de�ned for all 1 � m � n, and not only for
m = (n + 1)=k � 1 corresponding to the integers 1 < k � n + 1. Cressie (1976, 1979),
Hall (1986), and Ekström (1999) are among the authors dealing with the statistics (2.4)
for �xed m � 1 and eventually also for m slowly tending to 1 when n!1.
If m > 1, and in particular if m!1, then the statistics (2.4) assign more weight to

central spacings than to those in the tails. To avoid this, Hall (1986) proposed to wrap
the observations Y1; Y2; :::; Yn around the circle of unit circumference and to de�ne the
m-spacings Ym+j�Yj for arbitrary 1 � m � n and j as the distance between observations
Yj and Yj+m on this circle. This leads either to the extension of the ordered observations
Y1; : : : ; Yn by the formula

Yn+j = 1 + Yj for j = 1; 2; :::; n (2.5)

where the previous dummy observation Y0 = 0 is suppressed and the other dummy ob-
servation Yn+1 = 1 is rede�ned in accordance with (2.5) by Yn+1 = 1+ Y1, leading to the
m-spacing Yj+m � Yj to be equal to 1 + Ym+j�n � Yj if n + 1�m � j � n , or to the
extension by the alternative formula

Yn+j = 1 + Yj�1 for j = 0; 1; � � � ; n (2.6)

where the dummy observations Y0 = 0 and Yn+1 = 1 are placed on the circle as well,
resulting in them-spacing Yj+m�Yj to be de�ned as 1+Ym+j�n�1�Yj if n+2�m � j � n.
These extensions of the ordered observations Yj beyond j > n allow to add in (2.4) the
tail evidence missing there, namely by adding to the substituted averages (2.2) also the
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previously excluded terms. Depending on whether we use (2.5) or the alternative extension
(2.6), we get in this manner two di¤erent extensions of (2.4), namely

~S
(m)
� =

nX
j=1

�

�
(n+ 1)

Yj+m � Yj
m

�
where Yj+m = 1 + Yj+m�n (2.7)

if j = n+ 1�m; � � � ; n, or

~~S
(m)
� =

nX
j=0

�

�
(n+ 1)

Yj+m � Yj
m

�
where Yj+m = 1 + Yj+m�n�1 (2.8)

if j = n + 2 �m; � � � ; n; and Y0 = 0 (cf (2.6)). The statistics from the class (2.7) were
studied for example by Hall (1986) and Morales et al. (2003), while those from the class
(2.8) were investigated among others by Cressie (1978), Rao and Kuo (1984), Ekström
(1999) and Misra and van der Meulen (2001).

As said in the Introduction, this paper deals only with the ordinary spacings where
m = 1. This means that we use the statistics T� in the form presented in (1.29). If m = 1,
then not only S(m)� of (1.33) and Ŝ(m)� of (2.4) reduce for all � to the statistic

S� =
nX
j=0

� ((n+ 1) (Yj+1 � Yj)) ; where Yn+1 = 1 and Y0 = 0; (2.9)

introduced in (1.32), but also ~~S(m)� of (2.8) does so for all �. However, ~S(m)� of (2.7) does

not reduce to S�, unless � is linear. Indeed, if m = 1, ~S(m)� reduces to

~S� =
n�1X
j=1

� ((n+ 1) (Yj+1 � Yj)) + � ((n+ 1) (Y1 + 1� Yn)) (2.10)

which coincides with

S� =
n�1X
j=1

� ((n+ 1) (Yj+1 � Yj)) + � ((n+ 1)Y1) + � ((n+ 1) (1� Yn)) (2.11)

only if
� ((n+ 1)Y1) + � ((n+ 1) (1� Yn)) = � ((n+ 1) (Y1 + 1� Yn))

which takes place with a positive probability only for linear �.

In what follows we use the functions

�(n)(t) = �

�
n+ 1

n
t

�
(2.12)

and, in addition to T�, S�, ~S�; also the statistics R� introduced earlier in (1.30). Moreover,
we study another new type of spacings-type disparity statistic denoted by ~T�. To obtain
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it, we rede�ne the former partition P1 = f(0; Y1]; : : : ; (Yn�2; Yn�1]; (Yn�1; 1)g of (0; 1)
de�ned in (1.27), which led to the hypothetical distribution p0 of (1.28) and the empirical
distribution pn = un on P1 which both served as arguments of our general �-disparity
statistic T� of (1.29) derived from (1.25). The new partition of (0; 1) is obtained by
rearranging the n intervals of P1 into n new intervals by the rule

(0; Y1] 7! (0; Y1] [ (Yn; 1) and (Yn�1; 1) 7! (Yn�1; Yn]; (2.13)

with the intervals (Yj�1; Yj]; 2 � j � n � 1; remaining the same. This new partition,
denoted by ~P1, leads to the modi�ed hypothetical distribution

~p0 = (~p01 = Y1 + 1� Yn; ~p02 = Y2 � Y1; : : : ; ~p0n = Yn � Yn�1)

but preserves the original uniform empirical distribution pn = un on the cells of ~P1 ,
as each of the new n intervals still contains exactly one of the observations Y1; : : : ; Yn.
Therefore the new partition ~P1 leads to the new spacings-type disparity statistic

~T� = nD� (~p0;un) =
nX
j=1

�(n~p0j) (cf (1.25))

=
nX
j=2

� (n(Yj � Yj�1)) + � (n(Y1 + 1� Yn)) ; (2.14)

which di¤ers from T� of (1.29). Applying (2.12), we obtain the useful relations

~S� = ~T�(n) and S� = R�(n) : (2.15)

In addition to the statistics R�; S�; ~S�; T�; ~T�; de�ned above in (1.30), (1.32) , (2.10),
(1.29), and (2.14), respectively, we use in this paper also the auxiliary spacings-based
statistics

~R� =
n�1X
j=1

� (n(Yj+1 � Yj)) = R� � �(nY1)� � (n(1� Yn)) ; (2.16)

investigated previously by authors neglecting the tail probabilities such as for example
Hall (1984).

3. Asymptotic equivalence

The spacings-type �-disparity statistics R�; ~R�; S�; ~S�; T�, and ~T� are with probability one
formally well de�ned by (1.30), (2.16), (1.32), (2.10), (1.29), and (2.14) for all functions
� : (0;1) 7! R. However, our original functionals (1.3), (1.4) are justi�ed as measures of
disparity only for some of these functions. They are best justi�ed for � from the class �
de�ned in Section 1 in the paragraph after (1.5) when they represent �-divergences. In
what follows we relax the restrictions imposed on � and we consider the larger class �0
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of all continuous functions � : (0;1) 7! R which are twice continuously di¤erentiable in
a neighborhood of 1 with �00(1) > 0 and �(1) = 0. We see that this larger class does not
only contain the convex functions which de�ne �-divergences, but also those continuous
functions which de�ne �-disparities in the sense made precise in Section 1 in the paragraph
preceding (1.6).

In fact, in this section and in the rest of this paper we study the subset

fR�; ~R�; S�; ~S�; T�; ~T�g (3.1)

of the mentioned spacings-type �-disparity statistics for � from one of the subsets �2 �
�1 � �0 de�ned by the condition that there exist functions �; �; � : (0;1) 7! R such
that every � 2 �1 satis�es for all s; t 2 (0;1) the functional equation

�(st) = �(s)�(t) + �(t)�(s) + �(s) (t� 1) (3.2)

and every � 2 �2 satis�es the stronger functional equation

�(st) = �(s)�(t) + �(s) + �(s) (t� 1): (3.3)

Lemma 3.1. The functions �; � and � are continuous on (0;1) and satisfy the relations

�(1) = �(1) = 1 and �(1) = 0: (3.4)

Proof. The continuity of � and � can be obtained by putting t = 2 and t = 3, and that
of � by putting s = 2 in (3.2). If we put s = 1 in (3.2) or (3.3) and use the assumption
�(1) = 0, then we obtain that for all t 2 (0;1)

(�(1)� 1)�(t) + �(1) (t� 1) = 0:

This contradicts the assumption �00(1) > 0, unless �(1) = 1 which implies also �(1) = 0.
By putting t = 1 in (3.2) we �nd that �(1) = 1.

Lemma 3.2. Every � 2 �1 is di¤erentiable on (0;1), the corresponding functions �
and � are di¤erentiable at 1, and for every t > 0

�0(t) = �0(1)
�(t)

t
+ �0(1)

�(t)

t
+ �0(1)

t� 1
t

: (3.5)

Proof. Putting s = 1 + " and

��(") =
�(1 + ")� �(1)

"
; ��(") =

�(1 + ")� �(1)

"

we obtain from (3.2) for every t > 0 and " close to 0

t
�(t+ "t)� �(t)

"t
= ��(")�(t) +

�(1 + ")� �(1)

"
�(t) + ��(") (t� 1): (3.6)
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Since � is di¤erentiable in a neighborhood of 1, we have for t close to 1

��(")�(t) + ��(") (t� 1) = t �0(t)� �0(1) �(t) + o(") as "! 0:

By assumptions concerning �, �(t) is not linear in a neighborhood of t = 1. Therefore
the last relation implies that the limits of ��(") and ��(") for "! 0 exist, that is,

��(") = �0(1) + o(") and ��(") = �0(1) + o(") as "! 0:

Now (3.5) follows from (3.6) for all t > 0.

Example 3.1. The function �(t) = (1� t)=t, t > 0, belongs to � and satis�es (3.3) for
�(t) = 1=t and �(t) � 0. Therefore it belongs to �2 � �. The function �(t) = (1� t)2=t,
t > 0, belongs to � too and satis�es (3.3) for the same �(t) as above and �(t) = t� 1=t.
Therefore it belongs to �2. The functions de�ned on (0;1) by

��(t) =
t� ln t

(2�� 1) ; � 2 R� f 1
2
g

belong to � and satisfy (3.2) for �(t) = �(t) = t� and �(t) � 0. Therefore

f�� : � 2 R� f 12gg � �1

and �0 2 �2. But �1 satis�es also (3.3) for �(t) = t and �(t) = t ln t and therefore �1
belongs to �2.

In the remainder of this paper the observations are assumed to be distributed on (0; 1]
in two possible ways:

(i) under a �xed alternative,

(ii) under local alternatives.

Case (i) means that the observations are distributed by a �xed distribution function
F � f with f positive and continuous on [0; 1]. Case (ii) means that the observations
from samples of sizes n = 1; 2; : : : are distributed by distribution functions

F (n)(x) = F0(x) +
Ln(x)

4
p
n
= x+

Ln(x)
4
p
n

(3.7)

on [0; 1]; where the functions Ln : R 7! R are continuously di¤erentiable, with Ln(0) =
Ln(1) = 0, and with derivatives `n(x) = L0n(x) tending on [0; 1] to a continuously di¤er-
entiable function ` : R 7! R uniformly in the sense that

sup
0�x�1

j`n(x)� `(x)j = o(1) as n!1: (3.8)
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The two possibilities (i) and (ii) are not mutually exclusive: their conjunction is �under
the hypothesis H0 �where F (x) = F0(x), f(x) = f0(x) = I [0;1](x) and Ln(x) � 0 on R
for all n. This means that the asymptotic results obtained under local alternatives for
`(x) of (3.8) being identically equal to 0 must coincide with the results obtained under
the �xed alternative for F (x) = F0(x).

The theorems below demonstrate that if � 2 �2 de�nes a �-divergence or �-disparity,
then the statistics S�; ~S�; R� and ~R�, which are formally not scaled �-divergences or �-
disparities of the hypothetical and empirical distributions F0 and Fn, share the most im-
portant statistical properties with the statistics T� and ~T�, which are scaled �-divergences
or �-disparities of this type . Therefore they provide a key argument for the thesis of the
present paper formulated in Section 2, that the spacings-based goodness-of-�t statistics
considered in the previous literature actually measure a disparity between the hypothet-
ical and empirical distributions F0 and Fn, although this was possibly not so intended
by the various authors. But the main purpose of the following theorems is to present a
systematic asymptotic theory for the whole set of statistics (3.1) and to demonstrate that
the small modi�cations distinguishing these statistics from one another are asymptotically
negligible. The restriction to the functions from �2 or even �1 is not essential �it only
simpli�es the proof of the next theorem.

Theorem 3.1. Consider the observations under �xed or local alternatives, and the set
of statistics fR�; ~R�; S�; ~S�; T�; ~T�g de�ned in (1.30), (2.16), (1.32), (2.10), (1.29), and
(2.14). If � 2 �1 then for any statistic U� 2 fR�; S�; ~S�; T�g

U� � ~R� = Op(1) as n!1 (3.9)

and if � 2 �2 then

S� �R� = "nR� + �n and ~S� � ~T� = "n ~T� + �n (3.10)

where "n = o(1) and �n = �0(1) + o(1) as n!1.

Proof. We shall consider the �xed alternative F (x) with a continuous density f(x) > 0
for 0 � x � 1. For the local alternatives the argument is similar. By inspecting the
de�nitions of T�; ~T� and R� we see that for (3.9) it su¢ ces to prove that as n!1

�(np01) = Op(1) and �(n(p01 + p02)) = Op(1): (3.11)

It is known (see for example page 208 in Hall (1986)) that p01 = F�1(Z1=Wn+1) and p01+
p02 = F�1((Z1 + Z2)=Wn+1), where Z1; : : : ; Zn+1 are independent standard exponential
variables and Wn+1 = Z1 + � � �+ Zn+1, so that, for n!1,

Wn+1

n

p�! 1 and Vn =
Z1
Wn+1

p�! 0:
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Setting

�n =
F�1(Vn)

Vn
=
F�1(Vn)� F�1(0)

Vn

and using the mean value theorem and the assumed continuity of f in the neighborhood
of 0, we �nd that

�n
p�! 1

f(0)
as n!1

where, by assumptions about f , 0 < f(0) <1. Thus

np01 =
n

Wn+1

Z1�n

and, by applying (3.2),

�(np01) = �

�
n

Wn+1

�
�(Z1�n) + �(Z1�n)�

�
n

Wn+1

�
+ �

�
n

Wn+1

�
(Z1�n � 1):

Since Z1�n = Op(1) as n!1, we obtain from Lemma 3.1

�(np01) =

�
�

�
n

Wn+1

�
+ �

�
n

Wn+1

�
+ �

�
n

Wn+1

��
Op(1)

= [�(1) + �(1) + �(1) + op(1)]Op(1)

= Op(1) (cf (3.4));

thus proving the �rst relation of (3.11). Replacing Vn = Z1=Wn+1 by Vn = (Z1+Z2)=Wn+1;
and using the fact that now

(Z1 + Z2)�n = (Z1 + Z2)
F�1(Vn)� F�1(0)

Vn
= Op(1)

we obtain the second relation of (3.11). Next we prove (3.10). From (3.3) we get for any
p > 0

�((n+ 1) p) = �

�
n+ 1

n

�
�(np) + �

�
n+ 1

n

�
+ �

�
n+ 1

n

�
(np� 1)

so that

�((n+ 1) p)� �(np) = "n�(np) + �

�
n+ 1

n

�
+ �

�
n+ 1

n

�
(np� 1) (3.12)

where "n = �((n + 1)=n) � 1 = o(1) as n ! 1 by Lemma 3.1. Replacing p by the
probabilities p0j = Yj � Yj�1 �guring in the de�nitions of S� and R� (cf (1.32) and
(1.30)), and summing over 1 � j � n+ 1, we get the equality

S� �R� = "nR� + �n
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for

�n = (n+ 1)�

�
n+ 1

n

�
� �

�
n+ 1

n

�
=

n+ 1

n

�
�
1 + 1

n

�
� �(1)

1
n

� �

�
n+ 1

n

�
:

By Lemma 3.1,
�n = �0(1) + o(1) as n!1:

This completes the proof of the �rst relation in (3.10). The proof of the second relation
is the same: we just replace p in (3.12) by the probabilities ~p0j �guring in the de�nition
(2.14) of ~T�.

4. General asymptotic theory

In this section we study the same spacings-type �-disparity statistics R�; ~R�; S�; ~S�; T�
and ~T�, de�ned by (1.30), (2.16), (1.32), (2.10), (1.29), and (2.14), for � from �2 or �1
as in the previous section. Unless otherwise explicitly stated, these statistics are assumed
to be distributed under the �xed or local alternatives introduced as case (i) and case (ii)
in Section 3.

For every continuous function  : (0;1) 7! R we de�ne the condition

lim
t!1

t��j (t)j = lim
t#0

t�j (t)j = 0 for some � � 0 and � < 1 (4.1)

and the integral

h i = h (t)i =
Z 1

0

 (t) e�t dt: (4.2)

Obviously, if (4.1) holds then h i exists and is �nite.
Let � 2 �1 satisfy (4.1) and let

� = ��; � = �� and � = �� (4.3)

be the corresponding functions satisfying the functional equation (3.2). Then all functions

 (t) = �(ts)� �(t) �(s); s > 0;

satisfy (4.1) too, and by (3.2) the linear combinations

 (t) = �(t)�(s) + �(t) (s� 1); s > 0;

of functions �(t) and �(t) also satisfy (4.1). Since �(s) is not linear in the neighborhood
of s = 1, it follows from here that �(t) and �(t) themselves satisfy (4.1). Therefore the
integrals h�i and h�i exist and are �nite.
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For the �xed alternatives F � f we shall consider the linear combinations

��(f) = h�iD�(F0; F ) + h�iD�(F0; F ) (4.4)

where

D�(F0; F ) =

Z 1

0

f(x)�

�
1

f(x)

�
dx (4.5)

and

D�(F0; F ) =

Z 1

0

f(x)�

�
1

f(x)

�
dx (4.6)

are disparities of the distributions F0 and F , well de�ned by (1.3) under the present
assumptions about the densities f0 and f , and are �nite. If �(t) is convex on (0;1), or
�(t) � �0(1) (t � 1) is monotone on (0; 1) and (1;1), then D�(F0; F ) is a nonnegative
�-divergence or �-disparity of F0 and F . Similarly, if �(t) is convex on (0;1), or �(t) �
�(1)�� 0(1) (t�1) is monotone on (0; 1) and (1;1), then the ��-divergence or ��-disparity
of F0 and F for

��(t) = �(t)� �(1) = �(t)� 1 (cf (3.4))

satis�es the relation D��(F0; F ) = D�(F0; F ) � 1: Hence the formula for ��(f) can be
written for every � 2 �1 in the more intuitive form

��(f) = h�iD�(F0; F ) + h�i [D��(F0; F ) + 1] (4.7)

where � and �� depend on � as speci�ed above, andD�(F0; F ), D��(F0; F ) are divergences
or disparities between the hypothesis F0 and the alternative F for typical � 2 �1. For
� 2 �2 � �1 it holds that � � 1; so that (4.7) then simpli�es to

��(f) = h�iD�(F0; F ) + h�i: (4.8)

In particular for � 2 �2
��(f0) = h�i: (4.9)

Theorem 4.1. Consider the observations under a �xed alternative F � f with f posi-
tive and continuous on [0; 1]; and denote by U� any statistic from the class fR�; ~R�; T�; ~T�g.
If � 2 �1 satis�es (4.1), then

U�
n

p�! ��(f) for n!1 (4.10)

where ��(f) is given by (4.7). If � 2 �2 satis�es (4.1), then the asymptotic relation (4.10)
remains valid also for U� = ~S� and U� = S�; and ��(f) is given by the simpler formula
(4.8).
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Proof. By Theorem 1 of Hall (1984), the statistic ~R� de�ned by (2.16) satis�es under
a �xed alternative F � f the relation

~R�

n

p�! ~��(f) =

Z 1

0

f 2(x)

�Z 1

0

�(t) e�tf(x)dt

�
dx as n!1

provided � : (0;1) 7! R is continuous and exponentially bounded in the sense that
j�(t)j � K(t� + t��) for some K > 0, � � 0, � < 1; and f is bounded, piecewise
continuous and bounded away from 0 (see also part (i) of Theorem 3.1 in Misra and
van der Meulen (2001)). Thus (4.10) is proved for U� = ~R� as soon as it is shown that
for � 2 �1 the limit ~��(f) coincides with ��(f). By substituting s for tf(x) in the last
integral, and using the assumption 0 < f(x) <1 and the functional equation (3.2),

~��(f) =

Z 1

0

f(x)

�Z 1

0

�

�
s

f(x)

�
e�sds

�
dx (4.11)

=

Z 1

0

f(x)

�Z 1

0

�
�(s)�

�
1

f(x)

�
+ �

�
1

f(x)

�
�(s) + �(s)

�
1

f(x)
� 1
��

e�sds

�
dx

= ��(f) +

Z 1

0

�(s) e�s ds

Z 1

0

(1� f(x)) dx = ��(f):

The extension of (4.10) to U� 2 fT�; ~T�; R�g follows from Theorem 3.1. For � 2 �2 the
extension of (4.10) to U� 2 fS�; ~S�g follows from Theorem 3.1 too.

In the sequel we use the L2-norm

k`k =
�Z 1

0

`2(x) dx

�1=2
and we denote the integral (4.2) usually by h (t)i rather than h i.

Theorem 4.2. Consider the observations under the local alternatives (3.7) with a
limit function `(x) introduced in (3.8), and denote by U� any statistic from the set
fR�; ~R�; S�; ~S�; T�; ~T�g. If � 2 �2 satis�es the stronger version of (4.1) with � < 1=2
then

1p
n
(U� � n��)

D�! N(m�(`); �
2
�) as n!1 (4.12)

where
�� = h�(t)i; �2� = h�2(t)i � h�(t)i2 � (ht�(t)i � h�(t)i)

2 (4.13)

and

m�(`) =
k`k2
2

�
ht2�(t)i � 4ht�(t)i+ 2h�(t)i

�
: (4.14)
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Proof. For U� = S� the relations (4.12)�(4.14) follow from the result of Kuo and Rao
(1981), cf also Del Pino (1979) and Theorem 3.2 in Misra and van der Meulen (2001).
The extension to the remaining statistics U� follows from Theorem 3.1.

Let us now consider the �xed alternative F � f de�ned in Section 3 under (i), and
� 2 �2 with � = ��, � = ��, satisfying the functional equation (3.3), and denote by
�0; �0; �0 the derivatives of �; �; � as in Lemma 3.2. To express the asymptotic normality
under this alternative, we need auxiliary functions 	i = 	i;� of the variable x 2 (0; 1):

	1(x) = �0(1) h�(t)i f(x) �
�

1

f(x)

�
+ �0(1) f(x)�

�
1

f(x)

�
+ [�0(1)� �0(1)] f(x) + �0(1) (4.15)

	2(x) =
�
h�2(t)i � h�(t)i2

�
f(x) �2

�
1

f(x)

�
+ f(x) �2

�
1

f(x)

�
+2(ht�(t)i � h�(t)i)f(x) �

�
1

f(x)

�
�

�
1

f(x)

�
; (4.16)

	3(x) = (ht�(t)i � h�(t)i)
p
f(x) �

�
1

f(x)

�
+
p
f(x) �

�
1

f(x)

�
; (4.17)

and also

	4(x) =

p
f(x)

F (x)

Z x

0

�
1� F (y) f 0(y)

f 2(y)

�
	1(y) dy (4.18)

when the alternative density has a continuous derivative f 0(x) on (0; 1).

Theorem 4.3. Consider the observations under the �xed alternative F � f with f pos-
itive and continuous on [0; 1] and continuously di¤erentiable on (0; 1) with the derivative
f 0 bounded. If U� is a statistic from the set fR�; ~R�; S�; ~S�; T�; ~T�g, and � 2 �2 satis�es
the stronger version of (4.1) with � < 1=2, then

1p
n
(U� � n��(f))

D�! N(0; �2�(f)) as n!1 (4.19)

where ��(f) is given by (4.8) and

�2�(f) =

Z 1

0

	2(x) dx� 2
Z 1

0

	3(x)	4(x) dx+

Z 1

0

	24(x) dx (4.20)

for 	2(x); 	3(x) and 	4(x) de�ned by (4.16)�(4.18).

Proof. Consider U� = ~R� for � 2 �2. By Lemma 3.2, �(t) has a continuous derivative
�0(t) on (0;1). By (3.5), for every c 2 R

tcj�0(t)j � j�0(1)j tc�1j�(t)j+ j�0(1)j tc + j�0(1)j tc�1jt� 1j:
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Thus if � satis�es (4.1) with � < 1=2 then there exists � � 0 such that

lim
t!1

t��j�0(t)j = lim
t#0

t1+�j�0(t)j = 0:

This means that under the assumptions of the theorem there exist a > 0, K > 0 and
b < 1=2 such that for every t 2 (0;1)

j�(t)j � K(ta + t�b) and j�0(t)j � K(ta + t�b�1):

For continuously di¤erentiable functions � satisfying these assumptions, and �xed alter-
natives with densities f continuously di¤erentiable on (0; 1), it follows from Theorem 2
in Hall (1984) (cf also part (ii) of Theorem 3.1 in Misra and van der Meulen (2001)) that
U� = ~R� satis�es the relation

1p
n
(U� � n~��(f))

D�! N(0; ~�2�(f)) for n!1

where: (1) the asymptotic mean ~��(f) was presented and proved to be equal to ��(f) in
the proof of Theorem 4.1 under assumptions weaker than here and, (2) the asymptotic
variance ~�2�(f) can be speci�ed by means of the standard exponential variable Z and the
auxiliary function

G(x) =

Z x

0

�
1� F (y) f 0(y)

f 2(y)

�
E

�
Z �0

�
Z

f(y)

��
dy; 0 < x < 1; (4.21)

as the sum of

s21(f) =

Z 1

0

 
E�2

�
Z

f(x)

�
�
�
E�

�
Z

f(x)

��2!
f(x) dx (4.22)

s22(f) = �2
Z 1

0

E

�
(Z � 1)�

�
Z

f(x)

��
G(x)

F (x)
f(x) dx (4.23)

and

s23(f) =

Z 1

0

�
G(x)

F (x)

�2
f(x) dx: (4.24)

It remains to be proved that for every x 2 (0; 1) 
E �2

�
Z

f(x)

�
�
�
E �

�
Z

f(x)

��2!
f(x) = 	2(x); (4.25)

E

�
(Z � 1)�

�
Z

f(x)

��p
f(x) = 	3(x) (4.26)

and
G(x)

p
f(x)

F (x)
= 	4(x): (4.27)



Divergences between models and data under two types of quantizations 21

Indeed, then ~�2�(t) = �2�(f) so that (4.19) is proved for U� = R�, and the extension of
(4.19) to the remaining statistics U� 2 f ~R�; S�; ~S�; T�; ~T�g follows from Theorem 3.1. We
shall prove (4.25)�(4.27) in the reversed order. By substituting t = Z=f(y) in (3.5) and
taking into account that �(t) � 1 we obtain

E

�
Z�0

�
Z

f(y)

��
= f(y)E

�
�0(1)�

�
Z

f(y)

�
+ �0(1) + �0(1)

�
Z

f(y)
� 1
��

= f(y)

�
�0(1)E �

�
Z

f(y)

�
+ �0(1) + �0(1)

�
1

f(y)
� 1
��

and, by putting s = 1=f(x) and t = Z in (3.3), we get

�

�
Z

f(x)

�
= �(Z) �

�
1

f(x)

�
+ �

�
1

f(x)

�
+ �

�
1

f(x)

�
(Z � 1): (4.28)

Therefore

E �

�
Z

f(x)

�
= h�i�

�
1

f(x)

�
+ �

�
1

f(x)

�
(4.29)

and, consequently,

E

�
Z �0

�
Z

f(y)

��
= 	1(y): (4.30)

This, together with the de�nitions of 	4(x) and G(x) in (4.18) and (4.21), implies (4.27).
Further, from (4.28) and the de�nition of 	3(x) in (4.17) we get (4.26). Finally, from
(4.28), (4.29) and the de�nition of 	2(x) in (4.16) we obtain (4.25) which completes the
proof.

Remark 4.1. Under the hypothesis F0 � f0 � 1 both Theorems 4.2 and 4.3 deal with
the same statistical model. Therefore the asymptotic parameters (��; �

2
�) from (4.13) and

(��(f0); �
2
�(f0)) from (4.8) and (4.20) must be the same, that is, the equalities

��(f0) = h�i and �2�(f0) = h�2i � h�i2 � (ht�(t)i � h�i)
2

must hold. The �rst equality is clear from (4.9). For f = f0 we get from (4.30) by partial
integration

	1(y) = ht�0(t)i = ht�(t)i � h�i for all y 2 (0; 1):
Thus, by (4.18), 	4(x) is under the hypothesis constant, equal to ht�(t)i� h�i. Similarly,
by (4.16), (4.17) and Lemma 3.1, 	2(x) = h�2i � h�i2 and 	3(x) = 	4(x). Hence (4.20)
implies the desired result

�2�(f0) = 	2(x)� 2	24(x) + 	24(x) = �2�:
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Remark 4.2. The expressions ��; �
2
� are well de�ned by (4.13) for every continuous

function � : (0;1) 7! R satisfying the condition (4.1) with � < 1=2. If this condition
holds for some function  : (0;1) 7! R, then it holds also for all linear transformations
�(t) = a (t) + b(t� 1) + c and

�� = a� + c; �2� = a2�2 : (4.31)

Let us now consider a �xed alternative F � f with the density continuously di¤erentiable
on (0; 1). Then, using expression (4.11) for ��(f), and (4.22)�(4.24) for s

2
i (f), the formulas

��(f) =

Z 1

0

f(x)

�
�

�
t

f(x)

��
dx and �2�(f) = s21(f) + s22(f) + s23(f) (4.32)

de�ne ��(f) and �
2
�(f) for all continuously di¤erentiable functions � : (0;1) 7! R such

that both �(t) and ~�(t) = t�0(t) satisfy (4.1) with � < 1=2. If  is one of the functions
satisfying all these conditions then all linear transformations �(t) = a (t) + b(t � 1) + c
satisfy these conditions too and

��(f) = a� (f) + c; �2�(f) = a2�2 (f): (4.33)

Formulas (4.31) and (4.33) are veri�able from the de�nitions mentioned in this remark
and are useful for the evaluation of asymptotic means and variances.

Remark 4.3 We observe that the asymptotic results of Theorems 4.1, 4.2 and 4.3 are in
each case for a �xed � the same for any statistic U� from the class of statistics considered,
thus demonstrating the asymptotic equivalence of these statistics announced and alluded
to in Sections 1 and 3.

5. Power divergence statistics

The remaining part of this paper pays special attention to the subclass of spacings-based
�-disparity statistics studied in the previous section which are de�ned by the class of
convex functions � = �� : (0;1) 7! R parametrized by � 2 R and de�ned by (1.6),
(1.7). All these functions belong to the subset �2 � �, that is, they satisfy the functional
equation (3.3) with

�(t) = ��(t) = t� and �(t) = ��(t) =

( t��t
��1 if � 6= 1
lim
�!1

t��t
��1 = t ln t if � = 1

: (5.1)

In other words, if � 2 R then

��(st) = s���(t) + ��(s) + (t� 1) �
(

s��s
��1 if � 6= 1
s ln s if � = 1

(5.2)
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for all s; t > 0. We use the simpli�ed notation

D�(p; q) = D��(p; q) and D�(F;G) = D��(F;G) (cf (1.3)�(1.4))

for the ��-divergences, and also the easily veri�able facts that

~��(t) := ��(t) +
t� 1
�� 1 =

t� � 1
�(�� 1) ; � 2 R� f0; 1g

and
~�0(t) := �0(t)� t+ 1 = � ln t; ~�1(t) := �1(t) + t� 1 = t ln t

are convex functions belonging to �2 too, that the ~��-divergences coincide with the ��-
divergences, and that h~��(t)i = h��(t)i. We also use freely the symbols for the concrete
power divergences introduced in (1.8)�(1.11), therein replacing p and q by F and G.

In this and the following section we study the sets

U� = fR�� ;
~R�� ; S�� ;

~S�� ; T�� ;
~T��g (5.3)

of spacings-type ��-divergence statistics for � 2 R. Similarly as Section 4, we restrict
ourselves to the simple spacings (1-spacings), so that these statistics are well de�ned
almost surely by (1.29), (1.30), (2.9), (2.10), (2.14) and (2.16) for functions � replaced by
��: Similarly as the corresponding ��-divergences themselves, the ��-divergence statistics
T�� ;

~T�� and S�� are not altered if the nonnegative convex functions �� 2 �2 are replaced
by the simpler convex functions ~�� 2 �2. Note that throughout this paper the spacings-
type ��-divergence statistics T�� are distinguished in notation from the frequency-type
��-divergence statistics T

(f)
� discussed in Section 1, Example 1.1, by having no superscript

and using the subscript �� instead of just �.

The statistics T�� and
~T�� are scaled ��-divergences of hypothetical and empirical

distributions F0 and Fn quantized by the empirical quantile partitions of the observation
space (0; 1) discussed in part (II) Section 1 and in Section 2. For the other statistics from
U� one cannot �nd partitions of (0; 1) enabling such a direct ��-divergence interpretation,
but these statistics still re�ect a proximity of F0 and F reduced by some partitions of
(0; 1), and depending on the functions �� or ~��. Some of the statistics from U� are
closely related to the spacings-based statistics studied in the previous literature, as it is
mentioned in the following remark.

Remark 5.1. The statistic

G =
n+1X
j=1

(Yj � Yj�1)
2 =

1

n+ 1

�
1 +

2S�2
n+ 1

�
=

1

n+ 1

�
1 +

2S~�2
n+ 1

�
(5.4)

with Y0 = 0, Yn+1 = 1 was introduced by Greenwood (1946) the formula for S =
2S~�2 + n + 1 is presented based on  (t) = t2 = 2~�2(t) + 1) and studied later by Moran
(1951) and many others. The statistic

M = S�0 = S~�0 (5.5)
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was introduced by Moran (1951) and studied later by Cressie (1976), van Es (1992),
Ekström (1999) and many others cited by them. A class of statistics containing f ~R�� :

� > �1=2g was studied by Hall (1984), and classes containing f ~S�� : � 2 Rg and fR�� :
� 2 Rg were studied by Hall (1986) and Jammalamadaka et al. (1986, 1989), respectively.
Recently Misra and van der Meulen (2001) investigated the statistic S�1 = S~�1 (including
its generalization to the m-spacings for �xed m > 1). The only papers dealing sofar with
the spacings-based statistics with a direct ��-divergence interpretation appear to be those
of Morales et al. (2003), Vajda and van der Meulen (2006), Vajda (2007) and Jimenez and
Shao (2009). Morales et al. (2003) studied a class of statistics containing f ~T�� : � 2 Rg,
but the asymptotic theory was restricted there to the m-spacings with m = mn increasing
to in�nity for n!1, similarly as in Hall (1986) or Jammalamadaka et al. (1986, 1989).
Since the general asymptotic theory of the statistics U� 2 U� speci�ed by (5.3) is

covered by Theorem 3.1 and Theorems 4.1�4.3, the theorems that follow in the current
and following sections are their corollaries. However, they bring explicit formulas and
concrete results, the proofs of which are not trivial. These proofs are partly based on a
continuity theory for the asymptotic parameters

��(f) = ���(f); �
2
�(f) = �2��(f); �� = ��� ; �

2
� = �2�� and m�(`) = m��(`); (5.6)

de�ned by (4.32), (4.13) and (4.14), as functions of the structural parameter � 2 R. Such
a theory enables us to avoid a direct calculation of the asymptotic parameters at some
�0 2 R, if these calculations are tedious and the asymptotic parameters are known at the
neighboring parameters �. This theory is summarized in Theorem 5.1 below using the
next lemma. In Theorem 5.1 we take the representations (4.8) and (4.20) for ���(f) and
�2��(f) rather than (4.32).

Lemma 5.1. Let g(y) be a continuous positive function on a compact interval [a; b] � R
and �(u; v) a continuous function of variables u; v 2 R. Furthermore let, for all � from
an interval (c; d) � R,  � : (0;1) 7! R be convex or concave functions di¤erentiable at
some point t� 2 (0;1). If the values  �(t), t 2 (0;1), and the derivatives  0�(t�) depend
continuously on � 2 (c; d), then for every �0 2 (c; d)

lim
�!�0

bZ
a

�(g;  �(g)) dy =

bZ
a

�(g;  �0(g)) dy: (5.7)

Proof. By the assumptions about g,

t0 = min
y2[a;b]

g(y) > 0 and t1 = max
y2[a;b]

g(y) <1:

If  �(t) is convex, then for every t 2 [t0; t1] and � 2 (c; d)

 0�(t�) (t� t�) �  �(t) �  �(t0) +  �(t1):
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If  �(t) is concave, then, similarly,

 �(t0) +  �(t1) �  �(t) �  0�(t�) (t� t�):

Therefore in both cases

max
t0�t�t1

j �(t)j � max fj �(t0) +  �(t1)j; j 0�(t�)j � jt1 � t0jg :

The assumed continuity of  0�(t�) and  �(t0) +  �(t1) in the variable � 2 (c; d) implies
that for all compact neighborhoods N � (c; d) of �0 the constant

k = sup
�2N

max
t0�t�t1

j �(t)j = sup
�2N

max
y2[a;b]

j �(g(y))j

is �nite. Put
K = max

[t0;t1]�[�k;k]
�(u; v):

The function j�(g;  �(g))j of variables (y; �) 2 [a; b] � (c; d) is bounded on [a; b] �N by
K <1. Since for every y 2 [a; b]

lim
�!�0

�(g;  �(g)) = �(g;  �0(g));

the Lebesgue dominated convergence theorem for integrals implies (5.7).

Theorem 5.1. The asymptotic parameters ��; �
2
� and m�(`) speci�ed by (5.6) and

(4.13), (4.14) are continuous in the variable � 2 (�1=2;1). If the density f satis�es the
assumptions of Theorem 4.1, then the asymptotic mean ��(f) speci�ed by (5.6) and (4.8)
is continuous in the variable � 2 (�1;1). If f satis�es the stronger assumptions of The-
orem 4.3, then the asymptotic variance �2�(f) speci�ed by (5.6) and (4.20) is continuous
in the variable � 2 (�1=2;1).

Proof. Since �� = ��(f0) and �
2
� = �2�(f0), where the hypothetical density f0 satis�es

the assumptions of Theorems 4.1 and 4.3, the continuity of �� and �
2
� follows from the

continuity of ��(f) and �
2
�(f) proved below. By (5.6) and (4.14),

m�(`) =
k`k2
2

�
ht2��(t)i � 4ht��(t)i+ 2h��(t)i

�
where �� is given by (1.6), (1.7), and, by (4.2),

htj��(t)i =
Z 1

0

tj��(t) dH(t); j 2 f0; 1; 2g (5.8)

for H(t) = 1 � e�t. All integrals (5.8) are �nite if and only if � 2 (�1;1). Further, for
every �xed t > 0

d

d�
���(t) � 0 at any � 2 R: (5.9)
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Hence the continuity of the products �htj��(t)i in the variable � 2 R follows from the
monotone convergence theorem for integrals, and this implies also the desired continuity
of the integrals (5.8) at any � 2 (�1;1)� f0g. Further, for every �xed t > 0

d

d�
(�� 1)��(t) � 0 for any � 2 R: (5.10)

Hence the continuity of the products (��1) htj��(t)i in the variable � 2 R follows as well
from the monotone convergence theorem for integrals. Similarly as above, this implies
the continuity of the integrals (5.8) at the remaining point � = 0. Further, by (5.6) and
(4.8),

��(f) = h��iD�(F0; F ) + h��i
where, by (4.2) and (5.1)

h��i =
Z 1

0

t�dH(t) and h��i =
Z 1

0

��(t) dH(t):

These integrals are �nite if and only if � 2 (�1;1). The continuity of h��i at � 2 (�1;1)
was proved above, the continuity of D�(F0; F ) at � 2 R follows from the assumptions
about the densities f0 and f and from Proposition 2.14 in Liese and Vajda (1987). The
continuity of h��i at � 2 (�1;1) follows from the monotone convergence theorem for
integrals applied separately to the integration domains (0; 1) and (1;1). Finally, let
us consider �2�(f) de�ned by (4.15)�(4.20) for � = ��, � = ��, and � = �� given by
(1.6), (1.7) and (5.1). The integrals ht��(t)i, h��(t)i and h�2�(t)i are �nite if and only if
� 2 (�1=2;1), and their continuity at � 2 (�1=2;1) was either proved above or can be
proved similarly as above. The continuity of the integralZ 1

0

�
f�2�

�
1

f

�
+ f�2�

�
1

f

��
dx

at � 2 (�1=2;1) follows from Lemma 4.1, which establishes the continuity of the compo-
nent

R
	2(x) dx of �2�(f) in (4.20). For the continuity of the remaining two components,

we take into account that F (x) > c1x for some c1 > 0 on [0; 1]; because f is bounded
away from zero on [0; 1]. Furthermore, both f(x) and f 0(x) are bounded on [0; 1], so that
there exists a constant c2 such that in (4.18)p

f(x)

F (x)

Z x

0

����1� F (y) f 0(y)

f 2(y)

���� dy < c2 for all x 2 [0; 1]: (5.11)

Using the function '�(t) = ���(t), which is for every t > 0 continuous and monotone in
� 2 R (cf (5.9)), we obtain from (4.15)

	1(x) = �h��i f(x)1�� + f(x)'�

�
1

f(x)

�
+ 1� f(x)
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where the right-hand side is bounded on [0; 1], locally uniformly in �, and continuous at
any � 2 R. By (4.18) and (5.11), this implies that also 	4(x) is bounded on [0; 1], locally
uniformly in �, and continuous at any � 2 R. Since the integrands inZ 1

0

�p
f��

�
1

f

�
+
p
f��

�
1

f

��
	4 dx and

Z 1

0

	24 dx

are continuous on [0; 1] and locally bounded in the variable � 2 R, the continuity of both
these integrals in the variable � 2 R follows from the Lebesgue dominated convergence
theorem for integrals. This clari�es the continuity of the second and third component of
�2�(f) in (4.20) and thus completes the proof.

5.1. Consistency of power divergence statistics

In the theorems below we use the gamma function of the variable � 2 R and the Euler
constant,

�(�) =

Z 1

0

t��1 e�t dt and 
 = 0:577 : : : : (5.12)

Theorem 5.2. Consider the observations under the �xed alternative F � f assumed in
Theorem 4.1 and denote by U� any statistic from the class U� of (5.3). If � > �1, then

U�
n

p�! ��(f) as n!1 (5.13)

for
��(f) = D�(F0; F ) �(�+ 1) + ��; (5.14)

where

�0 = 
; �1 = 1� 
; and �� =
�(�+ 1)� �(1)

�(�� 1) for � =2 f0; 1g (5.15)

and D�(F0; F ) are the ��-divergences

D0(F0; F ) =

Z 1

0

f ln
f

f0
dx =

Z 1

0

f(x) ln f(x) dx; (5.16)

D1(F0; F ) =

Z 1

0

f0 ln
f0
f
dx = �

Z 1

0

ln f(x) dx; (5.17)

D�(F0; F ) =
1

�(�� 1)

�Z 1

0

f

�
f0
f

��
dx�1

�
=

1

�(�� 1)

�Z 1

0

f(x)1��dx�1
�

for � =2 f0; 1g: (5.18)

The ��-divergences are zero if and only if F = F0, so that under the hypothesis F = F0

��(f0) = ��; � 2 R: (5.19)

Both parameters �� and ��(f) are continuous in the variable � 2 (�1;1) and satisfy
the inequality ��(f) � ��, which is strict unless F = F0.
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Proof. The functions from the class f�� : � 2 (�1;1)g � �2 satisfy all assumptions of
Theorem 4.1. Hence (5.13) holds for all � > �1 and the limit ��(f) is given in accordance
with (4.8) and (5.1) by the formula

��(f) = h��(t)iD�(F0; F ) + h��(t)i = ht�iD�(F0; F ) + h~��(t)i

where ht�i = �(�+ 1) for all � 2 R. If � =2 f0; 1g then

h~��(t)i =
1

�(�� 1)ht
� � 1i = �(�+ 1)� �(1)

�(�� 1)

but the expressions

h~�0(t)i = h� ln ti and h~�1(t)i = ht ln ti

lead to the evaluation of unpleasant integrals. This evaluation can be avoided by employ-
ing Theorem 5.1. From the continuity of �� = h~��(t)i, it follows that

�j = h~�j(t)i = lim
�!j

�(�+ 1)� �(1)
�(�� 1) for j 2 f0; 1g;

where the limit on the right can be easily evaluated by using L�Hospital�s rule and the
known formulas �0(1) = �
, �0(2) = 1�
, thus leading to the values �j, j 2 f0; 1g, given
in (5.15). The continuity and the inequality ��(f) � �� for � 2 (�1;1) follow from
(5.14) and (5.15) because D�(F0; F ) is nonnegative and continuous in � 2 R and �(�+1)
is positive and continuous in � 2 (�1;1). The condition for equality follows from the
fact that D�(F0; F ) is positive unless F = F0.

Since �(� + 1) = �(� � 1) �(� � 1), (5.15) and (5.14) can be replaced for � =2 f0; 1g
by

�� = �(�� 1)�
1

�(�� 1) and ��(f) = �(�� 1)
Z 1

0

f 1�� dx� 1

�(�� 1) : (5.20)

Theorem 5.2 can be illustrated by Table 5.1, in which actual values of the parameters ��
and ��(f) are presented for selected parameters �. In this table, f denotes any density
considered in Theorem 5.2, and the expressions for D�(F0; F ), I(F0; F ), H(F0; F ), and
�2(F0; F ) can be easily discerned from (1.8)�(1.11) replacing p and q by F0 and F and
sums by integrals.
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Table 5.1: Values of �� and ��(f) for selected � > �1:

� �� ��(f)

�1
2

4
3
(
p
� � 1) := 1:030

p
�D�1=2(F0; F ) + ��1=2 =

4
p
�
3

R 1
0
f 3=2 dx� 4

3

0 

:
= 0:577 I(F; F0) + �0 =

R 1
0
f ln f dx+ 


1
2

4� 2
p
�
:
= 0:455 2

p
�H(F0; F ) + �1=2 = 4� 2

p
�
R 1
0

p
fdx

1 1� 

:
= 0:423 I(F0; F ) + �1 = 1� 
 �

R 1
0
ln f dx

2 1
2
= 0:500 �2(F0; F ) + �2 =

R 1
0
dx
f
� 1

2

3 5
6

:
= 0:833 6D3(F0; F ) + �3 =

R 1
0
dx
f2
� 1

6

6. Asymptotic laws for power divergence statistics

In this section we continue with the spacings-type power divergence statistics from the
sets U� = fR�� ;

~R�� ; S�� ;
~S�� ; T�� ;

~T��g introduced in Section 5 (cf (5.3)) for � > �1=2.
We study the asymptotic distributions of these statistics both under the local alternatives
assumed in Theorem 4.2 and under the �xed alternatives assumed in Theorem 4.3.

6.1. Asymptotic laws under local alternatives

Theorem 6.1. Consider the observations under the local alternatives (3.7) with the
limit function `(x) introduced in (3.8), and denote by U� any statistic from the class U�
of (5.3). If � > �1=2, then

1p
n
(U� � n��)

D�! N(m�(`); �
2
�) as n!1 (6.1)

where the parameters ��, m�(`), and �2� are continuous in the variable � 2 (�1=2;1) ,
and are given by (5.15) and the formulas

m�(`) =
k`k2
2
�(�+ 1) (6.2)

�2� =
�(2�+ 1)� (�2 + 1)�2(�+ 1)

�2(�� 1)2 for � =2 f0; 1g (6.3)

and

�20 =
�2

6
� 1; �21 =

�3

3
� 3: (6.4)
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Proof. Similarly as we applied Theorem 4.1 in the proof of Theorem 5.2, (6.1) follows
for all � > �1=2 from Theorem 4.2. If � =2 f0; 1g, then the expressions for m�(`) and
�2� given in (6.2) and (6.3) follow easily from the formulas given for m��(`) and �

2
��
in

Theorem 4.2, but the direct evaluation of mj(`) and �2j from these formulas for j 2 f0; 1g
is a somewhat tedious task. However, by using the continuity of m�(`) and �2� established
in Theorem 5.1, we obtain mj(`) and �2j given in (6.2) and (6.4) as the limits

mj(`) = lim
�!j

m�(`) and �2j = lim
�!j

�2� for j 2 f0; 1g;

which expressions can be easily evaluated by using the continuity of the right-hand side
of (6.2) and L�Hospital�s rule, thereby employing the formulas

�(�+ k + 1) = (�+ k) (�+ k � 1) � � � (�+ 1)�(�+ 1);
�00(�+ 1) = 2�0(�) + ��00(�)

and

�00(1) =
�2

6
+ 
2; �00(2) =

�2

6
� 2
 + 
2, �00(3) =

�2

3
+ 2� 6
 + 2
2

in addition to the previously used �0(1) = �
 and �0(2) = 1� 
.

Theorem 6.1 provides the possibility to compute and compare asymptotic relative
e¢ ciencies of tests of the hypothesis H0 : F0 � f0 based on the statistics U� 2 U�,
� > �1=2, for various values of �. The Pitman asymptotic relative e¢ ciency (ARE) of
one test relative to another is de�ned as the limit of the inverse ratio of sample sizes
required to obtain the same limiting power at the sequence of alternatives converging to
the null hypothesis. If we de�ne the �e¢ cacies�of the statistics U� 2 U� of Theorem 6.1
by

e¤(U�) =
�2(�+ 1)

�2�
=
(m�(`))

2

�2�

�
2

k`k2

�2
for k`k2 6= 0

then under the assumptions of Theorem 6.1 we get in accordance with Section 4 in Del
Pino (1979)

ARE(U�1 ; U�2) =
e�(U�1)

e�(U�2)

where U�1 and U�2 are arbitrary statistics from U�1 and U�2 . Notice that arbitrary
statistics U� from the set U�, � �xed, all have the same e¢ cacy (cf also Remark 4.3). In
Table 6.1 we present the parameters m�(`), �2� and �

2(� + 1)=�2� for selected values of
� > �1=2. This table indicates that the statistics U2 2 fR�2 ;

~R�2 ; S�2 ;
~S�2 ; T�2 ;

~T�2g are
most asymptotically e¢ cient in the Pitman sense among all statistics U�, � > �1=2. This
extends the result on p. 1457 in Rao and Kuo (1984) about the asymptotic e¢ ciency of
the Greenwood statistic G = (2S�2 +n+1)=(n+1)2 (cf. (5.4) in Remark 5.1 and formula
(7.2) below).
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Table 6.1: The asymptotic parameters m�(`), �2� and e¤(U�)

for selected statistics U� of Theorem 6.1.

� m�(`) �2� e¤(U�)

0 k`k2
2

�2

6
� 1 :

= 0:645 1.550
1
2

k`k2
p
�
4

:
= k`k2

2
� 0:886 16� 5� :

= 0:292 2.690

1 k`k2
2

�2

3
� 3 :

= 0:290 3.448

2 k`k2 = k`k2
2
� 2 1 4.000

3 k`k2 3 = k`k2
2
� 6 10 3.600

The general form of the asymptotic normality (6.1), as well as the continuity of the
parameters ��, m�(`) and �2� in � 2 (�1=2;1) established in Theorem 6.1 appear to be
new results. The special result for � = 0 also seems to be new. The particular result for
� 2 (�1=2;1)�f0; 1g and U� = S�� follows from the asymptotic normality obtained for
the statistics

n+1X
j=1

((n+ 1) (Yj � Yj�1))
� = �(�� 1)S�� + n+ 1 (6.5)

(cf (7.3) below) by Del Pino, see p. 1062 in Del Pino (1979). The particular result for
� = 1 and the statistics U1 = S�1 with �1 and �

2
1 given in the Tables 5.1 and 6.1 was

obtained by Misra and van der Meulen (2001), who however considered m-spacings for
arbitrary m � 1. They compared also the e¢ ciency of the test statistics for � = 0, � = 1,
and � = 2 with a similar conclusion as in the Table 6.1.

6.2. Asymptotic laws under �xed alternatives

In the remaining part of this section we study the asymptotic distributions of the spacings-
type power divergence statistics U� from the sets U� = fR�� ;

~R�� ; S�� ;
~S�� ; T�� ;

~T��g
for � > �1=2 under the assumption that the observations are distributed by a �xed
alternative F � f satisfying the assumptions of Theorem 4.3. If � > �1=2 then ��
satis�es the assumption of Theorem 4.3 too. Therefore this theorem implies that

1p
n
(U� � n��(f))

D�! N(0; �2�(f)) for n!1 (6.6)

where the asymptotic parameters ��(f), �
2
�(f) are given by (5.6). Similarly as in the pre-

vious section, we are interested in explicit formulas for these parameters. By Theorem 4.3,
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the asymptotic mean is for all � 2 R given by the explicit formula (5.14) presented in
Theorem 5.2. The only problem which remains is the formula for �2�(f), � 2 R.
The functions  �(t) = t� with � > �1=2 satisfy all assumptions of Remark 4.2 so that

we can consider the quantities

� 2�(f) � �2 �(f); � 2 (�1=2;1)

de�ned there. By (4.33),

�2�(f) =
� 2�(f)

�2(�� 1)2 for � 2 (�1=2;1)� f0; 1g: (6.7)

One can �nd on p. 521 of Hall (1984) an expression for � 2�(f) for all � 2 (�1=2;1)�
f0; 1g, which for the case m = 1 can be given the form

� 2�(f) = �2(�� 1)2
�
�2�

Z 1

0

f 1�2�dx+ �2(�+ 1)��(F0; F )

�
(6.8)

where �2� is de�ned by formula (6.3) and

��(F0; F ) =
1

�2

Z 1

0

�
1

(f(x))�
� 1

F (x)

Z x

0

(f(y))1��dy

�2
f(x) dx for � 2 R�f0g: (6.9)

Since Hall (1984) gave no hint about the derivation of his formula, let us mention that
(6.8) is obtained if one substitutes  � for � in the expressions (4.22)�(4.24) for s

2
j(f),

j 2 f1; 2; 3g, given in the proof of Theorem 4.3, thereby employing the expression

G(x) = �E(Z�)

Z x

0

�
1� Ff 0

f 2

�
1

f��1
dy

= �(�+ 1)

�
(�� 1)

Z x

0

(f(y))1��dy + (f(x))��F (x)

�
for G(x) of (4.21) when � is replaced by  �, and then forms the sum s21(f)+s

2
2(f)+s

2
3(f).

By (6.7) and (6.8),

�2�(f) = �2�

Z 1

0

f 1�2�dx+ �2(�+ 1)��(F0; F ); � 2 (�1=2;1)� f0; 1g: (6.10)

The �nal, intuitively appealing, form of the asymptotic variance

�2�(f) = (1 + 2�(2�� 1)D2�(F0; F ))�
2
� + �

2(�+ 1)��(F0; F ) (6.11)

(with �2�(f0) = �2� given in (6.3)), follows for � 2 (�1=2;1)� f0; 1g by taking into ac-
count the formula forD2�(F0; F ) obtained from (5.18). The peculiar expression��(F0; F )
�guring in (6.9) and (6.11) can be better understood if we take into account the following
Lemma, after which we extend (6.11) to include also the values � 2 f0; 1g.
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Lemma 6.2. If the �xed alternative F � f satis�es the assumptions of Theorem 4.3
then the class f��(F0; F ) : � 2 R� f0gg consists of the variances

��(F0; F ) =

Z 1

0

�
f��

�
�
Z 1

0

f��

�
f dy

�2
f dx

=

Z 1

0

�
f��

�

�2
f dx�

�Z 1

0

f��

�
f dx

�2
(6.12)

of the functions f��(X)=� of the random argument X distributed by F: This class is
continuously extended to all � 2 R by introducing the variance

�0(F0; F ) =

Z 1

0

�
ln f �

Z 1

0

(ln f) f dy

�2
f dx

=

Z 1

0

f ln2 f dx�
�Z 1

0

f ln f dx

�2
(6.13)

of the function ln f(X) of the random argument X introduced above. All ��(F0; F ),
� 2 R, are nonnegative measures of divergence of F0 and F , re�exive in the sense that
��(F0; F ) = 0 if and only if F = F0.

Proof. If  : [0; 1] 7! R is continuous then by the assumptions about f

inf
x2[0;1]

f(x) > 0 and sup
x2[0;1]

j (x) f(x)j <1

and, consequently, the function

	(x) =

Z x

0

 (y) f(y) dy; x 2 (0; 1)

is well de�ned. Since
d

dx

	2

F
= �

�
	

F

�2
f +

2	 f

F

and
j	(y)j � y sup

x2[0;1]
j (x) f(x)j as well as F (y) � y inf

x2[0;1]
f(x);

the function 	 satis�es the relationZ 1

0

( �	=F )2f dx =
Z 1

0

 2f dx�
�Z 1

0

 f dx

�2
: (6.14)

To this end take into account the relationsZ 1

0

( �	=F )2f dx =

Z 1

0

 2f dx�
Z 1

0

2	 f

F
dx+

Z 1

0

�
	

F

�2
f dx

=

Z 1

0

 2f dx�
�
	2(1)

F (1)
� lim

y#0

	2(y)

F (y)

�
=

Z 1

0

 2f dx� 	
2(1)

F (1)
:
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Now, using (6.14) we obtain (6.12) from the de�nition (6.9). Since f is assumed to be
bounded and bounded away from 0,

lim
�!0

��(F0; F ) =

Z 1

0

�
lim
�!0

f�� � 1
�

�
Z 1

0

lim
�!0

f�� � 1
�

f dy

�2
f dx

=

Z 1

0

�
ln f �

Z 1

0

(ln f) f dy

�2
f dx

= �0(F0; F )

which proves the continuity at � = 0. The re�exivity is clear from (6.12) and (6.13).

We are now in a position to formulate the general results obtained in this paper
regarding the asymptotic normality of spacings-type power divergence statistics U� from
the sets U� = fR�� ;

~R�� ; S�� ;
~S�� ; T�� ;

~T��g for � > �1=2 under the assumption of
the �xed alternative, thereby specifying the parameters ��(f) and �

2
�(f) in (6.6) for all

� > �1=2. Inspecting once more formula (6.11), we observe that if � > �1=2 di¤ers
from 0 and 1, then the asymptotic variance �2�(f) under the alternative f exceeds the
asymptotic variance �2� = �2�(f0) achieved under the hypothesis F0 � f0 by a linear
function of �2� given by

2�(2�� 1)D2�(F0; F )�
2
� + �

2(�+ 1)��(F0; F ) (6.15)

with the coe¢ cients D2�(F0; F ) and ��(F0; F ) positive unless F = F0. By using Theo-
rem 5.1, we can now �nd the formulas for �20(f) and �

2
1(f) which are missing in (6.10)

by taking limits in (6.11) for �! 0 and �! 1. Since the limits �20 and �
2
1 were already

calculated in Theorem 6.1, and the limit �0(F0; F ) is clear from Lemma 6.2, we obtain

�20(f) = lim
�!0

�2�(f) = �20 +�0(F0; F ) (6.16)

and

�21(f) = lim
�!1

�2�(f) = (1 + 2D2(F0; F ))�
2
1 +�1(F0; F ) (6.17)

where (cf (6.12))

�1(F0; F ) =

Z 1

0

1

f
dx� 1: (6.18)

Together with (6.10), (6.16) and (6.17) provide formulas for �2�(f) for all � > �1=2. It is
clear that �20(f) and �

2
1(f) are of the form (6.11), so that the representation (6.11) holds

for all � > �1=2. We summarize our results as follows.

Theorem 6.2. If the alternative F � f satis�es the assumptions of Theorem 4.3, then
the asymptotic formula of (6.6) is valid for all � > �1=2. The asymptotic means ��(f) are
given by the explicit formulas (5.14)�(5.18). The asymptotic variances �2�(f) are given by
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(6.11), where the explicit formulas forD2�(F0; F ) can be found in (5.16)�(5.18), those for
�2� in (6.3) and (6.4), and the formulas for ��(F0; F ) in (6.12) and (6.13). The asymptotic
means and variances are continuous in the variable � 2 (�1=2;1). The asymptotic means
satisfy the inequality ��(f) � �� mentioned in Theorem 5.2. The asymptotic variances
satisfy the inequality �2�(f) � �2�. Both inequalities become equalities if and only if
F = F0.

Proof. The proof should be clear from what was said above. The inequality �2�(f) � �2�
and the condition for equality follow from (6.11), because D2�(F0; F ) and ��(F0; F ) are
nonnegative measures of divergence of F0 and F , which are equal to zero if and only if
F = F0, in which case the excess function (6.15) is 0.

Concrete forms of ��(f) and �
2
�(f0) = �2� were illustrated in Tables 5.1 and 6.1. The

next table illustrates �2�(f) given by (6.11) for arbitrary f satisfying the assumptions of
Theorem 4.3 and selected values of �. In each line of Table 6.2 two expressions for �2�(f)
are given: the �rst one is obtained by substituting � in (6.11), the second one by actually
calculating D2�(F0; F ) and ��(F0; F ) in each case and putting the results in a closed
form. As presumed, for f = 1 the illustrated values reduce to �2� from Table 6.1.

Table 6.2: Asymptotic variances �2�(f) for selected � > �1=2.

� �2�(f)

0 �20 +�0(F0; F ) = �2

6
� 1 +

R 1
0
f ln2 fdx �

�R 1
0
f ln f dx

�2
1 [1 + �2(F0; F )]�

2
1 +�1(F0; F ) =

R 1
0
dx
f

�
�2

3
� 2
�
� 1

2 [1 + 12D4(F0; F )�
2
2 + 4�2(F0; F )] = 2

R 1
0
dx
f3
�
�R 1

0
dx
f

�2
3 [1 + 30D6(F0; F )]�

2
3 + 36�3(F0; F ) = 14

R 1
0
dx
f5
� 4

�R 1
0
dx
f2

�2

7. Discussion

The general form of the asymptotic normality (6.6) established by Theorem 6.2, as well as
the continuity of the asymptotic means and variances ��(f) and �

2
�(f) in the parameter

� > �1=2 proved in Theorem 5.1, and the explicit formulas (5.14) and (6.11) for these
parameters for general � seem to be new results. However, in the references cited in
Sections 1 and 2 one can �nd particular versions of these results for some of the statistics
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U� from the set fR�� ;
~R�� ; S�� ;

~S�� ; T�� ;
~T��g or their linear functions, and for some � >

�1=2 and some distributions F � f:

Let us start with the statisticM = S�0 proposed by Moran (1951) and given in (5.5).
The asymptotic normality (6.6) for � = 0, U0 = S�0 and f = f0 � 1, with the parameters
�0(f0) = �0 and �

2
0(f0) = �20 given in Tables 5.1 and 6.1, was proved by Darling (1953),

yielding speci�cally that under H0

1p
n
(M� n
)

D�! N

�
0;
�2

6
� 1
�

as n!1: (7.1)

The result of Darling was extended to all positively valued step functions f on [0; 1] by
Cressie (1976), who also obtained �0(f) and �20(f) given in Tables 5.1 and 6.2. The
result of Cressie was extended by van Es (1992) to the alternatives f considered in the
present paper which satisfy a Lipschitz condition on [0; 1], and to all f considered in
this paper by Shao and Hahn (1995). Cressie(1976) and van Es(1992) studied S�0 as the
special case obtained for m = 1 from a more general statistic based on m-spacings with
m � 1. Van Es extended ideas and methods developed for m > 1 by Vasicek (1976)
and Dudewicz and van der Meulen (1981) for proving the consistency and asymptotic
normality of a spacings-based estimator of entropy. The latter authors considered only
�(t) = �0(t) = � ln t.
Greenwood (1946) introduced the statistic

G =
n+1X
j=1

(Yj � Yj�1)
2 =

2S�2 + n+ 1

(n+ 1)2
; (7.2)

given above in (5.4). Kimball (1950) proposed the generalization

n+1X
j=1

(Yj � Yj�1)
� =

�(�� 1)S�� + n+ 1

(n+ 1)�
; � > 0; (7.3)

and Darling (1953) proved an asymptotic normality theorem equivalent to (6.6) for U� =
S�� , � 2 (0;1) � f1g, and f = f0 � 1. Weiss (1957) extended this result of Darling to
positive piecewise constant densities f . Hall (1984) obtained the asymptotic normality

1p
n

�
~U� � n�(�� 1)��(f)� n

�
D�! N(0; �2(�� 1)2�2�(f)) as n!1 (7.4)

for all statistics

~U� =

nX
j=2

(n(Yj � Yj�1))
�

= �(�� 1) ~R�� � �n(1� Yn + Y1) + n+ �� 1 = �(�� 1) ~R�� + n+Op(1)
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with � 2 (�1=2;1)�f0; 1g for any f considered in Theorem 6.2. Here ��(f) and �2�(f)
are the same as in Theorem 6.2, with ��(f) given by the right-hand side of (5.20) and
�2�(f) by (6.11), ~R�� is de�ned as in (2.16) with � = ��, and the Op(1) statement follows
from the proof of Theorem 3.1. In fact, this result of Hall (1984) was one of the arguments
used in the proof of Theorem 6.2.

The statistic S�1 was proposed recently by Misra and van der Meulen (2001), who
proved the asymptotic normality (6.6) for U1 = S�1 and any f considered in Theorem 6.2,
with the parameters �1(f) and �

2
1(f) given in Tables 5.1 and 6.2, yielding the result

1p
n

�
S�1 � n

�
1� 
 �

Z 1

0

ln f dx

��
D�! N

�
0;

Z 1

0

�
�2

3
� 2
�
dx

f
� 1
�

as n!1:

(7.5)

We see that the present Theorem 6.2 uni�es and extends the results proved separately
in the literature in three di¤erent situations for two particular statistics from the set
(5.3). The formulas for all asymptotic parameters ��(f) and �

2
�(f) of the statistics U�

are shown to follow via the asymptotic equivalence of these statistics (cf Theorem 3.1)
and the continuity of these parameters in � (cf Theorem 5.1) from Hall�s formula (cf (7.4))
for the asymptotic parameters of ~U� with � 2 (�1=2;1) di¤erent from 0 and 1.
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